Welcome to ITTSB Forum, extension and content sharing platform of ITTSB.EU ( Electrical Test and Measurement Product Reviews Blog ).

Registration this is Free, to support this Blog please use our donation links available in our Blog page and forum.  

Active since 7 June 2012  

Copyright Notice:  All content of this web site this is copyright protected. - Forum search engine this is disabled for Guests.  

Author Topic: Function Generator Pulse delay in Hz this translated in to seconds  (Read 842 times)

0 Members and 1 Guest are viewing this topic.

Online Kiriakos GR

  • Administrator
  • Hero Member
  • *****
  • Posts: 2046
  • Country: gr
    • ittsb.eu
  • job title: Industrial Maintenance Electrician
Function Generator Pulse delay this is special function.
Large delay times are very useful too. 
In modern AWG you may select for example just one cycle of sine-wave this be output-ed according your choice speaking of repeat-ability.
You have also choices of frequency and amplitude, but in my experiments I did select 400Hz as test frequency at 20V pp.

Accuracy of measurements bellow this is not of high importance.
When a manufacturer does a choice using Hz as signal delay, everything makes sense when we use 1 Hz and above.

Bellow I am going to add measurements lower than 1Hz so most of you to discover the relation of micro Hertz with seconds or milliseconds of time.

Lets start with known values first:

10 Hz = 100ms
9 = 110
8 = 125
7 = 143
6 = 166
5 Hz = 200ms
4 = 250ms
3 = 333
2 = 500
1 HZ = 1 S

Bellow 1Hz Area

900 mHz = 1.11 S
800 = 1.25
700 = 1.43
600 = 1.67
500 = 2 S
400 = 2.5
300 = 3.3
200 = 5.0
100 mHz = 10 S
50  mHz = 20 S
25 mHz = 40 S

I did use my oscilloscope for all those measurements.
If you are interested to discover how bling your oscilloscope this could be at not repeatable signals, then by delivering just one cycle of a signal every few seconds, then you may easily start a comparison ( benchmark ) between two oscilloscopes against its other.

In a such a benchmark, you will gain awareness of how much sampling memory required from your own Oscilloscope so this to become fast enough to capture non repeatable signals.

One another conclusion that you might come to ( subject of personal experience), this is sine-wave frequency and signal amplitude that your Oscilloscope will not capture due their own hardware limitations.

One of my very own conclusions this is that blind time that one Oscilloscope will have regarding signal acquisition, this is not improved by a double in bandwidth Oscilloscope.
I can also reverse my words for a better understanding,  one oscilloscope this made to be a high performer,  this will have improved signal acquisition even if you choose a model of low bandwidth.   
WWW.ITTSB.EU   Industrial Test Tools Scoreboard  (Product Reviews Blog) / Editor in Chief.
The content of this Web site is copyright protected



Blog front page facebook ITTSB Blog - Donate Link General Data Protection Regulation GDPR

ITTSB Blog Sponsors

priniotakis.gr - Electronics division protosnet.com - Internet solutions